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A b s t r a c t  

F. Kle in ' sy iewpoin t  o f  geometry  is applied to the  discussion of  the  t ime-dependent  
t ransformat ion  (TDT) in Newtonian  mechanics.  Formally the vectorial character o f  
t ransformat ion and the invariance o f  the form of  Newtonian  equat ions  o f  mo t ion  under  
TDT are assumed. Then  it is shown tha t  our  concept ion  o f  force in Newtonian  equat ions 
satisfies a certain t ransformat ion  property  under  TDT, which is different  f rom the case o f  
Galileo and Newton  in which ~brce is regarded as an  absolute  quant i ty .  Our  theory also 
enables one to derive the  fictitious forces such as the  centrifugal force and Coriolis force. 
Tile balance equat ion between these fictitious forces and those with reversed sign is 
considered. The  centripetal  force of the  new type  and the  force depending on  angular 
acceleration are also given. 

1. I n t r o d u c t i o n  

It is well known that, from the geometrical viewpoint, Newtonian mechanics 
belongs to the category of Euclidean geometry. According to F. Klein, Euclidean 
geometry is "the science whose purpose is to study the invariant properties of 
figures under any transformation belonging to the group of motions" (Yano, 1968). 
In other words, we can state the following: "Euclidean geometry is the geometry 
that has the group of motions as its fundamental group." Here in three- 
dimensional space x -~ t (x  1, x2 ,  x3), the element T 3 of the group of motions 
can be written as follows: 

T3': x - +  x '  = A " x + a (1.1) 
t ~ t t t 

Here we use the symbols, x - (xa, x2, x3), a =- t(a t, a~, a3), and A =- (aij), 
and we have the following requirements: 

det ta i i I  = 1 and tA = A  - t  (1.2) 
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All real numbers ai] and ak are constants independent ofx .  As is well known, 
the set o f  these transformations T 3' forms a group. The group T~ corresponding 
to the case a = 0 is called the rotational group, and we write this as T 3. The 
group T~ corresponding to the case A = 1 is called the translational group. 

On the other hand, in Newtonian mechanics, when we choose arbitrarily a 
single observer, there exists some degree of  freedom, or arbitrariness, in his 
choice of  a coordinate system (including time t) (x, t )  - t (x  t ,  x2, x3, t) which 
he uses to describe the motion of a point-particle. (Ordinarily, in a textbook 
the condition of "inertial frame" is imposed on this coordinate system. How- 
ever, we neglect this condition for a while.) We express this arbitrariness in 
terms of  a transformation T. Let the other coordinate system, which the same 
observer can use, be (x', t '). Then we have the expression 

T: (x, t) -+ (x', t ') (1.3) 

Here the transformation T consists of  two transformations T;  and To; the 
transformation x -+ x '  is the element of  the group T~ of motions and the trans- 
formation t -+ t '  is that of  the translational group To (t -+ t' = t + ao, ao is an 
arbitrary real constant). Thus the transformation T consists of  two mutually 
independent transformations T;  and T o, and therefore T forms a group. For 
these transformations T, two differentials d x  =- t (dxl ,  dx2,  dx3)  and d t  suffer 
" rota t ion"  T 3 and "identical transformation" 1 : 

T3 : d x  -~ d x '  = A . dx ,  t : d t  ~ d t '  = l . d t  = d t  (1.4) 

Therefore the set of  ordered three differentials t (dx l ,  dx2,  dx3)  can be con- 
sidered as a vector in three-dimensional Euclidean space E 3, whose length 
squared is defined by (dxl) 2 + (dx2) 2 + (dx3) 2. The differential d t  is an invariant 
of  the transformation T. Therefore we need only consider the former in 
equations (1.4); therefore we need only consider the transformation T~ in 
equation (1.1) as the transformation of coordinates x. (In this discussion it is 
necessary that the transformation T does not depend on x or t; i.e., T is a 
"constant  t ransformation." This point wilt be discussed later.) Therefore if  
we define the velocity v - t(Vl, v2, v3) of  a point particle by d x  i = v i d t  

(vi = d x l d t ) ,  then v is a vector in E 3. In the same way, for the acceleration 
a i = d v i / d t  = d 2 x i / d t  2, a = t (o t l ,  or2, a3) is a three-vector. Let mass m be a 
3-scalar and force F =- t ( F  t ,  F 2, F3) be a 3-vector. Then Newton's  equation of  
motion,  

d2xi  = Fi, i = 1, 2, 3 (1.5) m-a- V 

is a vector equation (therefore a tensor equation) and it is a covariant (i.e., 
form-invariant) relation for the transformation T;  and therefore it has a geo- 
metrical meaning. For the transformation T~ of  equation (1.1), we have the 
following transformation properties: 



and 

TRANSFORMATION IN NEWTONIAN MECHANICS 

d2x d2x dZx ' 
- - - - > Z "  
dt  2 d t  2 d t  2 
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F-~ A . F =  F '  (1.6) 

m - - >  m = m I 

Therefore equation (1.5) is transformed, under the same T~, as 

d2x} 
mdt- ~ =Fi, i = 1,2, 3 (1.5') 

and its form remains invariant. (The covariance of the equation of motion 
automatically follows because of its vectorial character. In the next section 
we shall require formally these two properties.) Accordingly when we choose 
a single observer arbitrarily, equation (1.5) does not depend on the choice of 
an orthogonal coordinate system (with positive orientation) used by the 
observer. Furthermore, because the choice of the observer is arbitrary as 
previously stated, equation (1.5) is meaningful for all observers. In Newtonian 
mechanics the differential of time dt  is common, i.e., invariant (dt' = dt) for 
the transformation (x, t) -~ (x', t') between two observers, and therefore we 
can verify definitely the above fact. (In the following sections we assume 
further that time t is an absolute parameter: t' = t.) In the following we con- 
sider the transformation to the accelerated frame requiring formally the vectorial 
transformation property and the tbrm invariance of Newton's equation. 

2. Transformation between Observers: The Problem o f  the Aecelerated Frame 

a. The Generalized Galileo-Transformation. First we consider the following 
transformation: 

dvi-+ dv ~ =dr i - oq dt, i = 1, 2, 3 (2.1) 

which is the generalization of the classical Galileo transformation and which 
corresponds to the "Galileo transformation in velocity space." Here v and v' 
are the velocities of a point particle in two reference frames that correspond 
to two observers S and S'  and a = t(oq, a2, a3) is the relative acceleration of S' 
with respect to S and it may generally be dependent on time; a = ~(t). This 
generalized Galileo transformation (2.1) corresponds, as the transformation of 
space coordinates, to the case A = 1 (unit matrix) and a depends on time t in 
equation (1.1). For this transformation equation (1.4) does not hold, and 
therefore equation (1.5) cannot be regarded as a vectorial equation. However, 
in this paper we proceed requiring formally the vectorial transformation- 
property of Newton's equation (1.5) under the transformation (2. i),  as in 
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Section 1. This requirement holds as an approximation, locally in t or in the 
"moment , "  if  the time dependence o fa ( t )  is small, i.e., 

da(t)dt_ ~ I dx-fit or dx' [ (whichever is f 

Then under this generalized Galileo transformation the left-hand side of  
Newton's equation is transformed as 

d2x d2x [ d2x ' 
m d t 2 - + m l ' ~ = m ~ ) T g  +~ ] 

_[ d2x'77 ) = m~ - o~' (2.2) 

setting formally A = 1 in equation (1.6). Here we used equation (2.1); 
t t t , • a '  -= (~1, a2, %) is the acceleration of  the S frame with respect to the S '  

frame. If we require that the force F acting on the point particle m be trans- 
formed under this transformation, as 

F -+  1 • F = F (2.3) 

according to (1.6), then Newton's equation is transformed as follows: 

. [d2x' ) 
m [ ) - f i  - a '  = F  (2.4) 

On the other hand if we require the covariance of  Newton's  equation, we have 
the equation (1.5') in the S '  frame. Here F '  = t(F' a, F'> F'a) represents the 
force acting on the same point particle m with respect to the S '  frame. There- 
fore we have the following equation: 

F = F' - ms' (2.5) 

This equation shows the relation existing between the force F for the observer 
S and the force F '  for the observer S'. Here the relative acceleration a '  can 
generally depend on time. 

In classical Newtonian mechanics the relation F '  = F is presupposed 
(MNler, 1952), and therefore Newton's equation cannot be covariant under 
the generalized Galileo transformation. It is well known that the form invariance 
under the condition F '  = F holds only in the case where a '  (= - a )  is zero. 
Ordinarily textbooks treat only this case as a Galileo transformation. However, 
in our viewpoint, if  the forces satisfy equation (2.5), then Newton's  equation 
can have its meaning for such an accelerated frame as a '  :/= 0. Our relation 
(2.5) shows that two concepts of  force and (mass x acceleration) are equivalent, 
and the concept of  force is not absolute if we take into account accelerated 
frames. In the next section we consider the transformation to the rotating 
reference frame and show that the centrifugal force and Coriolis force can be 
introduced in the same way as above. 
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b. The Rotating Frame. Let us consider the transformation from a fixed 
reference frame S to a rotating reference frame S'. Here the angular velocity 
of the rotating frame can depend on time. That is, Euter angles (Goldstein, 
1950) 4, 0, and f need not be linear formulas of time t. Let the coordinates 
of a point particle be transformed from x to x' under this transformation. 
Then we have, 

x' = A(t) " x, A(t) -~ (aij(t)) 

det l aq(t)l = 1, for all t (2.6) 

A-l(t)  = tA(t) 

Here the matrix A(t) may depend on t. Equation (2.6) corresponds to the 
case where a = 0 and A = A(t) in equation (1.1). Equation (t .4) does not hold 
either in this case, and therefore Newton's equation cannot have the vectorial 
transformation property under equation (2.6), as in the case in Section 2.a. 
(This point will be discussed later.) However, we require formally also here 
the following two things: the vectorial transformation property and the 
covariance of Newton's equation. Then under the transformation (2.6), the 
acceleration and the force transform as equation (t .6). On the other hand we 
have the following equations differentiating equation (2.6): 

and 

dx' dA x + A  d x _ _ = _ _ .  . _ ,  (dA) i j -daq( t )  
dt dt dt -~  dt (2.7) 

d2x ' d2A 2~_. dx + A d2x 
= - . x +  . ( 2 . 8 )  

dt 2 dt 2 dt dt dt 2 

Therefore we have the equation 

d2x d2x [d 2x' d2A dA dx ) 
- - - ' x  -- 2 . . . .  A - F  ( 2 . 9 )  m ~ 2  -+ mA.  d f i  = m [dt2 dt 2 dt dr 

Next we assume formally dA/dt = 0 in equation (2.7). [If the time dependence 
of A(t) is much slower than that ofx( t )  or x'(t), then we can accept the 
assumption locally in t or in the "moment."] Thus we have 

dx' dx 
dt a( t )  dt (2.1o) 

and therefore velocity can be regarded as a vector (or a tensor). That is, in the 
"moment" velocity dx/dt has the tensorial character, if the temporal change 
of A(t) is slow. Under this condition we have the equation 

d2x F' dZA A q x  ' - 2m dA A_ 1 dx' (2.11) 
mA y f i  -- - m dZ ~ . d--i" 7 ;  

where we used the covariance of Newton's equation (t.5'). 
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Thus we have 

d2A dA . A_ 1 dx '  
F-+ A" F = F' - m - -~ .  A-'ix ' - 2m --dt dt (2.12) 

The force A • F is nothing but the representation of  the force F acting on the 
point particle in the S frame by the components  along axes of  the S '  frame. In 
a special case, the second term of (2.12) represents the centrifugal force and the 
third term the Coriolis force. (On the direction of  the force corresponding to 
the third term, see the remark given later.) This fact can be easily verified, if 
we take the expression 

[ cos~  s in~  ! )  

co 00 0 = ~(t) (2.13) 

which represents the ~b rotation around the x3 axis. [See equation (3.6) below.] 
In the preceding discussion we assumed the equation dA/dt = 0 in the formula 

of  the transformation of velocity (2.7). Next we consider the case without 
this assumption. 

3. Nontensorial Character of  Velocity: The Relativity of  Coriolis Force 

Let the point particle be constrained to move on a spherical surface. In tiffs 
case we can take A(t) of  equation (2.6) such that  dx'/dt = 0. That is, there 
exists the transformation A(t) which gives the new frame S '  in which the 
velocity of  a point particle becomes zero, and which satisfies the condition 
(2.6). I f  the transformation x -~ x '  = A • x gives the equation dx'/dt = 0 
(dx/dt 4 ~ 0), then Coriolis force can be eliminated in the S '  frame. I f  in the 
general formula of  velocity transformation (2.7) we put dx'/dt = 0, then we 
have 

dA dx 
0 = - -  x + A "  - -  (3.1) 

dt dt 
and 

dx _A_ 1 dA 
- - -  " x  ( 3 . 2 )  

dt dt 

The latter gives the velocity dx/dt of a particle at a point x when A(t) is given. 
The former gives A(t) when dx/dt is known. This is a simultaneous linear homo- 
geneous differential equation of  order 1. Therefore the three independent matrix 
elements of  A(t) are uniquely determined in terms of  the "coefficients" x(t) 
and dx(t)/dt, and the initial value of A( t ) )  If  we use such a transformation as A(t), 
the Coriolis force becomes zero in the S '  frame. 
1 The linearity of equation (3.1) may be destroyed when it is expressed by the independent 

elements of A(t). In this case the above discussion still holds locally in t by the general 
theory of differential equations (e.g., Shimizu, 1965). 
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Using the general formula of velocity transformation (2.7) in equation 
(2.9), we obtain the following equation instead of equation (2.1 t): 

d2x = dZA ( F ' -  -1 , + 2m_d_ AA-I x' mA ~-~ m - ~  A x \ d t 

dA dx 
_ 2mZZ " A-I 
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(3.3) 
dt dt 

Thus we have the equation 

d2A I , idA _1 \2 , dx' - rn - 2m dAA-I - -  (3.4) F-*A-F=F '  ~ A - x  + 2 m l ~ A  ) x  dt dt 

The third term in the right-hand side of this equation is the force introduced 
newly. Let the transformation of coordinates x ~ x' be given by A(t) of 
equation (2.13). This corresponds to, as the transformation of coordinate 
axes, the rotation ~(t) of the S' frame around the x3 axis of a fixed S frame. 
[This is expressed symbolically as S' = A(t) - S. ] If we observe the motion 
of the point-particle m, in the S frame, which moves straight with a constant 
velocity in the S' frame, i.e., F '  = 0, then we have the equation according to 
equation (3.4), 

d2A l ' (d~t f - - ( 3 . 5 )  A . F = - m £ f i A - x  +2m A-1 x'-2mdAA-ldX'dt dt 

The particle m does the motion corresponding to the force F given by equation 
(3.5). If we use the special expression (2.13) for A, we have the equation 

The first two terms of this equation come from the first term of equation (3.5). 
The first of them is the centrifugal force, and the second is the deflecting force 
by the angular acceleration. The third term of equation (3.6) is the force intro- 
duced newly and is the centripetal force towards the origin of the coordinates. 
The magnitude of this centripetal force is just equal to twice the centrifugal 
force. The vectorial sum of them is the centripetal force whose magnitude is 
equal to that of the first centrifugal force. The fourth term is the reversed 
Coriolis force (Goldstein, 1950). Let us consider this motion for the case 

= const. The locus of the particle in the S' frame is the straight line (with 
direction) starting from, e.g., the origin, and in the S frame it is the eddy out- 
ward from the origin. The eddy cuts across the positive Xl axis with the constant 
"period" 27rtq~, and we have fll~ =/32~ . . . .  , where fli are the points at which 
the eddy cuts across the positive xl axis. If the third term, centripetal force, 
of equation (3.6) does not exist, then the particle in the S frame will be flung 
away from the origin by the centrifugal force more rapidly than the eddy 
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having the above property. If the fourthterm, the reversed Coriolis force, 
does not exist, then we will have 0/31 < /3162 "< /32/33 < " " " and the orbit of 
the particle will expand, so that 

(the time between/31 and ~2) < (the time between/32 and ~3) < ' " " 

In any case, if we observe, in a fixed frame, the motion of the particle 
that moves straight with a constant velocity in a rotating frame (we do not 
assume the constancy of ~ here), then we observe a motion as if the four 
forces of equation (3.6) were actually acting on the particle. Conversely, only 
in this circumstance does the motion of a particle in a rotating frame become 
straight motion with constant velocity. It is to be noted that A - F in equation 
(3.6) is the expression of the force F in the S frame using its components 
along the orthogonal axes of the S' frame.The force depending on the 
angular acceleration ~ vanishes if the angular velocity ~b is constant. Ordinarily 
texts treat only this case. However, this term may become important when an 
external force (e.g., electromagnetic field, etc.) is applied to the system. 

This discussion shows the physical reality of equation (3.4) including our 
newly introduced centripetal force, viz., the third term of equation (3.4). 

4. The Relativity between a Fixed Frame and a Rotating Frame, and 
Balance of Forces: The Symmetry of the Theory 

In the preceding sections we have formally distinguished between a fixed 
frame and a rotating frame (or an accelerated frame). However this distinction 
is physically meaningless, if we admit a negative angle of rotation (only in this 
case does the set of these rotational transformations form a group): It is essen- 
tially arbitrary (or relative) what we call a fixed frame (or an accelerated frame) 
between two observers S and S'. In this section we investigate the symmetry of 
our formulation on this relativity. 

The following two descriptions represent a physically identical situation 
(the relativity between a fixed frame and a rotating frame): 

(1) Observing from the S frame, the S'  frame is rotating with an angle ~ t )  
around the x 3 axis (which, we assume, coincides with the x~ axis). 

(2) Observing from the S' frame, the S frame is rotating with an angle 
-q~(t) around the x~ axis (which coincides with the x3 axis). 

In the case (1) the force F '  (= md2x'/dt 2) is given by equation (3.4) as 

F ' = A . F + m ~ - ~ A - x  - 2 m  A-' x' +2mdAA-'dXZdt dt (4.1) 

Case (2) corresponds to the following formal interchanges in case (1): 

x~+x', F~F' ,  A(O(t))+~A(-~(t))=A-a(~(t)) (4.2) 

Here we write A(t) of equation (2.13) as A($(t)). Actually we can easily 
verify the invariance of equation (4.1) under the interchange (4.2) using the 
relations 

x' =A(O(t)). x 
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and 

d(A-l) - A-1 dAA-1 
dt dt (4.3) 

-1 2 -1 d2A -1 d2(A-l ) - 2A-l ( dA 2 \ dt ) - A  -d-fi A 

Furthermore we introduce the following two descriptions, (1') and (2'), 
which correspond to the formal interchange between S and S' in (1) and (2), 
respectively (this corresponds to the interchanges x +~ x' and F +~ F') :  

(1 ') Observing from the S' frame, the S flame is rotating with an angle q~(t) 
, 

around the x3 axis. 
(2') Observing from the S flame, the S' frame is rotating with an angle 

-~b(t) around the x3 axis. 
The following "commutative diagram" holds among these four situations: 

s ~ s '  
(a),  ~ 0 5  

(2')~ "~ (2) 
Here the horizontal arrow represents the interchange between the S frame 
and the S' frame (i.e., the two interchanges x +~ x' and F ~÷ F'), and the 
vertical arrow represents the interchange between 8(t) and -~( t ) .  There exist 
two routes (1) -+ (1') ~ (2) and (1) -* (2') -+ (2) in the diagram to go to (2) 
from (1); these two routes give the identical result (2) ("commutative"). In fact 
we can easily verify that when we operate the two interchanges S +~ S' and 
~b ~+ -~ ,  in equation (4. t), we have the identical result independent of their 
order. The dotted lines in the diagram show the physical equivalence stated 
above. 

Let us consider the case in which an observer (S' frame) observes the motion 
of a particle that corresponds to the free motion (F = 0) to the other observer 
(S frame). Here we assume that the two frames of S and S' are rotating relatively 
around the x3 axis (which is identical to the x~ axis). There are the following 
four descriptions according to whether we call the fixed frame S or S', and 
call the angle of the rotation ~(t) or -~ ( t )  (.let F '  be the quantity to be asked 
for in each case): 

observe, in" rotating" ' " ' e O We the frame S with the rotational angle ~(t), th 
free>tnotion (of a particle) with respect to the fixed frame S. 

• - ' - " 1 l(,~)We observe, in the rotating frame S with the rotatmnal ang e -dp(t), 
the free motion with respect to the fixed frame S. 

(~)We observe, in the fixed frame S', the free motion with respect to the 
rotating frame S with the rotational angle ~(t). 
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We observe, in the fixed frame S', the free motion with respect to the 
rotating frame S with the rotational angle -~b(t). 
The following commutative diagram holds among these four situations: 

@..~. , e(t) ~ -4~(t? "2"1(1 @ 

~.',-..'" f ixed  f r a m e  ~ ro t a t i ng  f r a m e  

©-: >© 

(4.4) 

Here the vertical arrow represents the interchange of the two words "fixed 
frame" and "rotating frame." It is obvious here that the diagram is commutative. 
As discussed at the beginning of this section (i.e., the relativity between the 
fixed frame and the rotating frame), we have the physically identical result 
even if we apply the two interchanges, fixed frame ~ rotating frame and 
~(t) ~ -~b(t). Therefore the two situations connected by a dotted line are 
physically equivalent: 

@ = @ (equivalent) 

and (4.5) 

= @(equivalent)  

Therefore we can ask for @ ,  instead of asking for @ ,  corresponding to the 

interchange ¢ + , -¢  in Q ~ ,  when we know the case 1Q~). This can be verifed 

using equation (4.3) as in the case of  equation (4.2). In the present case the 
problem is specialized by the condition F = 0. 

Let us consider the problem of balance of the centrifugal force and 
Coriolis force with the forces with the reversed directions, respectively. We 
change the names. We call the fixed frame S and the rotating frame S'. We call 
hereafter the rotating frame with a positive rotational angle ¢(t) [a negative 
rotational angle -¢( t ) ]  a p. rot frame (a n. rot frame). We consider the 
following four situations corresponding further to F = 0 or F '  = 0: 

(A) We observe, in a fixed frame S, the free motion (F'  = 0) with respect 
to a p. rot frame S'. 

(B) We observe, in a p. rot frame S', the free motion (F = 0) with respect 
to a fixed frame S. 

(C) We observe, in a n. rot frame S', the free motion (F = 0) with respect 
to a fixed frame S. 

(D) We observe, in a fixed frame S, the free motion (F' = 0) with respect 
to a n. rot frame S'. 
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The following commutative diagram is obtained: 

F = 0 ~ F ' = 0  
( h  
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,< - ~  (B) 

t ~** -~ (4.6) 

D ) ,  - -*  (C) 

The commutativity of the diagram is easily verified from equation (4.1). It is 
to be noted that (A) and (C), or (B) and (D) are no longer physically equivalent 
here. The relation of these situations is given as follows: 

X +-~ x ' ,  F ,-~. F '  
(A) [or (B)] ~ ) (C) [or (D)] (4.7) 

This fact can easily be understood by noting that we can write as x' = A- x in 
(A) and (B), and as x '  = A -1. x (i.e., x = A.  x')  in (C) and (D). 

For (A) we have, from equation (4.1), 

d2A-1,  ( 2 ) 2  x, dAA ldX' A ' F  = - m ~ A  x +2m A-1 - 2 m  - - -  (4.8) 
dt dt 

which is the representation of the force F in a fixed frame S using the coordinate 
axes of the S' frame as its base, and which represents the centripetal force and 
reversed Coriolis force, etc. [see equation (3.5) and following]. On the other 
hand, for (B) we have also from equation (4.1) 

F' - d2A 2mdAA 1 dx' 
- m -d~ A-1x'  - -  2m A-1 xt + d t  - d t  (4.9) 

This is nothing but the centrifugal force and Coriolis force, etc., as mentioned 
in Section 3. Thus each corresponding term in equation (4.8) and equation 
(4.9) is added to give zero, respectively, and this shows the balance of respective 
forces. We express this fact simply as 

A" F[F'= 0 + F '  IF=o =0 [(A) and (B); inS '  frame] (4.10) 

Conventionally the centripetal force is introduced using an elastic string or a 
spring balance as a constraint. However, it is to be noted that we do not need 
the subsidiary tools here and we can introduce the force of the constraint 
naturally from the condition of the motion of a particle. Furthermore it is 
clarified that when we discuss the balance of the fictitious forces we are 
necessarily implicitly assuming two observers. 

Equation (4.10) is the expression of the balance of forces using the rotating 
coordinate axes (S' frame) as its base. If we use the fixed coordinate axes 
(S frame) as a base, then we have the expression 

FIF' = o + A-X " F '  [F = 0 = 0 [(A) and (B); in S frame] (4.11) 
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We have the expressions for (C) and (D) in the same way: 

= A ( ~ ) 2  2 m d A - l A d X '  F'  m d2(-1) A x '  - 2m A x' + - -  - -  
d t  ~ d t  dt  

and 

d2(A-1) (d~A) 2X' 
A-I"  F = - m  A x '  + 2m - 2m dA----~l A 

dx__]' 

dt  ~ d t  d t  

Therefore the balance of forces can be written as follows: 

F '  iF = 0 + A-1 ' Fly'_- o = 0 [(C) and (D); in S' frame] (4.12) 

and 

A" F'IF= 0 +F[F,= 0 =0 [(C) and (D);in S frame] (4.13) 

Here it should be noted that actually we can derive one equation from another 
both between equations (4.10) and (4.13), and between equations (4.11) and 
(4.12), respectively, by the relation (4.7). 

5. The General Time-Dependent Transformation o f  Motion 

In the previous section we considered especially the rotating frame as an 
accelerated frame. In this section we consider the general time-dependent 
transformation of motion, 

r ; ( t ) :  x -~ x '  = A ( t )  " x + a ( t )  ( 5 , 1 )  

where 

det l aij(t) [ = 1 (for all t) 

~l(t) = A- l ( t )  

Differentiating equation (5.1) we obtain the equations 

dx' dA dx  da 
- . x + A .  - -  + - -  

dt  dt  dt  d t  

and 

( 5 . 2 )  

dZx ' d2A dA dx d2x dZa 
dt  2 d t  2 . x + 2--dt " dt-- + A . d t  2 -  + ~-~ (5.3) 

If we assume the equation of motion (1.5) in the S frame formally as a vector 
equation also under the transformation (5.1), we obtain the following trans- 
formations according to equation (1.6): 

d~x d2x d2x ' d2A dA dx  d2a 
- -  - +  A ( t ) -  - - - -  • x - 2 . . . . .  ( 5 . 4 )  
dt  2 ~ dt  2 d t  2 d t  dt  d t  2 
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and 

F-+ A(t) " F (5.5) 

Here we used equation (5.3). Therefore equation (1.5) is transformed as 
follows: 

d2x (d2x ' d2A 2 dAdx  d ~ t  
m A ( t ) ' ~  = m l  ~f~ dt 2 x  dt dt dt 2 

= A ( t ) - F  ( 5 . 6 )  

We assume that equation (1.5') holds in the S' frame, in which F '  represents 
the force acting on the identical particle m in the S' frame. Then we have, 
from equation (5.6), 

d2A dA dx d2a 
A( t ) .  F = F' - m - ~  x -  2 m - -  m 

dt dt dt 2 
(5 .7 )  

On the other hand, from equation (5.1) we have 

(T;(t))-l:  x'  -+ x = A -1 (t)(x' - a) 

= A -1 ( t)" x'  + a'( t )  

where 

(5 .8 )  

a'(t) = - A - l ( t )  • a(t) 
or (5 .9 )  

a(t)= A ( t ) ' a ' ( t )  

From equation (5.8) we obtain 

 X_A l{dx' 
dt \ d t  

and 

dA A _ I x  , + (5.10) 
dt dt ] 

d2a d2A , dA da' dZa ' 
- - -  = 2 - -  - -  - A  - -  ( 5 . 1 1 )  
dt z dt 2a - d t d t  dt 2 

Using these equations we can rewrite equation (5.7) in terms of the quantities 
in the S' frame, i.e., x' and a', as follows: 

d2A 1 ,  2m{dAA-1] 2x , - 9m dA A-1 dX'+ mA d2a' 
A" F = F' - m -d-~A- x + \d t  ] - 

d-~t- dr--- 2 dt 

(5.12) 

Comparing this with equation (3.4), we know that only the last term is newly 
introduced, which is the force arising from coupling of translation and rotation. 
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By the relativity between a fixed frame and a moving frame, and by equations 
(5.1) and (5.8), equation (5.12) must be invariant when we apply the inter- 
changes 

x ~x' ,  F+~F ' (5.13) 
and 

A(t) ~ A-l(t), a(t) ~ a'(t) (5.14) 

In fact we can easily verify the invariance using equations (4.3), (5.8), (5.9), 
(5.10), and (5.1 t). Furthermore, we have the commutative diagram 

©.: :© 

1 .-- ..... "">': ......... . I a(t)~a'(t) ] 

......... 7 

where @ - @  are the following expressions: 
@ The accelerated frame S' is given by first rotating [A(t)] the fixed frame 

S, and secondly translating [a(t)] it. [In other words the accelerated frame S' 
is given by the transformation T;(t) to the fixed frame S. Symbolically we 
expr, Qess this as S' = 7~(t). S.] 

(~) The accelerated frame S is given by first rotating [A(t)] the fixed frame 
S', and secondly translating [a(t)] it; [S = T~(t). S'] 

@ The accelerated frame S is given by first translating [-a(t)] the fixed 
frame S' (in negative direction), and secondly rotating [A-l(t)] it (in negative 
direction) [S = {T~(t)} -1 -S ' ] .  

@ The accelerated frame S' is given by first translating [-a(t)] the fixed 
frame S (in negative direction), and secondly rotating [A-l(t)] it (in negative 
direction) [S '=  (T~(t)} -1. S]. 

In the diagram the horizontal arrow represents the interchange between the 
S frame and the S' frame, i.e. equation (5.13), and the vertical arrow represents 
that between the accelerated frame and the fixed frame, i.e., equation (5.14). 
It is to be noted that because of the noncommutabflity of translation and 
rotation, the interchange of two words, the accelerated frame and the fixed 
frame, in the expression ( ~  gives the expression @ with S and S'  interchanged, 
in which the order of the two operations rotation and translation is reversed 
compared to (~). The dotted line represents the physical equivalence. 

For the general time-dependent transformation of motion we can also 
discuss the transformation of the free motion, .the balance of the forces, etc. 
as in the formalism of equations (4.4), (4.6), and (4.10), provided that we 
displace the word "p. rot frame" (or "n. rot frame") by the word"  the frame 
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applied by the (or inverse) transformation T~(t)" [or {T~(t)}-l], respectively. 
However, we will not discuss these points farther here. 

6. Discussion and Conclusions 

In the above we applied, though formally, F. Klein's (1849-1925) view- 
point of geometry to Newtonian mechanics [Klein, together with B. Riemann, 
(1826-1866), is a pioneer of geometry] and tried to point out its importance 
in mechanics. The group-theoretical viewpoint of geometry will become 
important for the future development of  various branches of dynamics in 
their foundations. It is true that in the present article we assumed formally 
the vectorial character and the form invariance of Newton's equation In 
reality it is known from equation (5.3) that the acceleration dZx/dt 2 in 
Newton's equation does not transform as a vector for the general time- 
dependent transformation of motion. In fact, neither the acceleration nor the 
velocity dx/dt transforms as a vector, which is shown in equation (5.2). 
Therefore it is clear that the discussion developed in the present article is 
hard to accept i f  we are forced to see it only from the purely mathematical 
viewpoint. How can we improve this point? Let us consider especially the 
linear transformation, i.e., the rotation A(t), among the transformations of 
motions. Though in the previous sections we treated the rotation A(t)  as a 
finite transformation x -~ x', there exists the possibility of treating this dis- 
placing by the infinitesimal transformation 

i.e., 
cLv -~ dx ~ 

, ~ Ox} 
dxj= . ~ i d x i  

If we develop this investigation, then we arrive at the conception of a 
differentiable C ~ manifold (or still more a real analytic C ~ manifold). On 
the other hand, if we develop the investigation of an infinitesimal transforma- 
tion of coordinate axes, we arrive at the concept of E. Cartan's Euclidean 
connection (Yano, 1968), where we can exclude the restriction that the 
coordinates xi are the orthogonal Cartesian coordinates. Then we can regard 
the velocity dxi/dt as a contravariant vector and the coordinate x i as itself not 
a vector, and we can define the acceleration as a tensor by the covariant 
differential of the velocity dxi/dt. However, we will give these discussions in 
succeeding papers, and we give here only the preceding remarks. 

In any case it should be noted that we were able to discuss the relativity of 
forces, the deductive derivation of the fictitious forces and their balance, also 
for the accelerated frame, i.e., the time-dependent transformation of motion, 
formally imposing the above two assumptions. Since the times of Galileo and 
Newton, "the force" is regarded as an absolute quantity (M¢ller, 1952). It 
was A. Einstein who, in his theory of general relativity, first tried to introduce 
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the transformation of force under the general transformation of coordinates 
including accelerated frames. However according to our present investigation 
it is known that this conception can be formally introduced also in the form 
of Newton's equation of motion. This fact will have great significance for 
our new approach to gravitation and motion, which will be presented in 
succeeding papers. 
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